CDM Workshop (Calculation Excercise of CDM Project Feasibility) 6 August 2010 JICA Expert Team

1.Objective of the Workshop

- To understand important factors to assess CDM project viability using simple examples.
- To understand basic concept of:
 - GHG emission reduction calculation
 - Simple project income and expenditure calculation

2. Description of the Example Case

Project Description

- Fuel switch from fossil fuel to biomass resources
- Biomass boiler will replace the furnace oil boiler
- Steam generated from the boiler will be used in-house
- Biomass will be collected from saw mill or rice mill (otherwise disposed of to a landfill)

Small Scale Methodology Type III.C. Thermal energy production with or without electricity

3. Key Factors for Assessing Project Feasibility (1)

• GHG emission reduction amount (= Amount of CER)

- Other factors to be considered(not considered in this exercise):
 - Suitable technology
 - The availability of biomass resources (Seasonal change of biomass resources)
 - Purchasing price of biomass resources including future prospect (Supply and demand balances)

4. Preconditions and Assumptions Used for Calculation

• Preconditions

Item	Figure
Energy sources	Biomass (saw dust, rice husk)
Energy to be replaced	Furnace oil
Oil consumption	2 t_oil/day
Operating days	300 days/yr
Emission factor of furnace oil	3.19 kgCO2/kg_oil
Furnace oil price	33 Rupees/t_oil
Amount of biomass to replace 1 ton of oil	Rice husk: 3.3kg_biomass/kg_oil Saw dust: 2.5 kg_biomass/kg_oil
Biomass purchasing price	Rice husk: 3.0 rupees/kg Saw dust: 2.2 rupees/kg
Biomass transport cost	10 rupees/t/km
CER selling price	1500 rupees/tCER

Figures are assumptions, not necessarily reflect the actual situations

4. Preconditions and Assumptions Used for Calculation

- Assumptions (for the purpose of simplification)
 - Project initial cost is not considered.
 - CDM related cost (development cost, monitoring cost etc) is not included
 - Enough biomass is available at each mill throughout the year
 - Methane emissions from biomass decay process is not included in the calculation
 - Emissions related to biomass procurement is not considered
 - Additionality issue is not considered

STEP1: Amount of Biomass Required

• What is the quantity of biomass resources to supply for the thermal energy demand?

STEP6: Income / Expenditure

8% of the cost saving amount

Summary/Conclusions

- What are the lessens learned through the exercise?
 - Biomass procurement plan (transportation distance, price of biomass, availability, seasonal fluctuation etc) is a very significant factor for biomass CDM project
 - Detail design of boiler such as size and technology will be affected by biomass type (quantity, characteristics of biomass)
 - Range of initial cost will be restricted by income and expenditure of the project